In combustion, enols can undergo keto-enol tautomerizations, which are intermediate steps in the formation of pollutant species. In this work, we performed a theoretical kinetic study of the step-wise propen-2-ol tautomerization catalyzed by hydrogen and hydroperoxyl radicals. Ab initio calculations at the CCSD(T)/aug-cc-pVTZ//M06-2X/cc-pVTZ level were run, and rate constants were calculated using the multistructural torsional variational transition state theory with calculated rate constants can be used to perform more accurate kinetic modeling of alcohols. Besides, the implementation of the SS-QRRK theory with the collision efficiency of Gilbert et al. (1983) proposed in this work is useful for computing pressure-dependent rate constants of chemically activated reactions, including all possible refinements (multi-dimensional tunneling, multistructural anharmonicity, etc.) considered in the calculation of high-pressure limit rate constants.