In this paper we present the mechanical and control design of a magnetic tracked mobile robot. The robot is designed to move on vertical steel ship hulls and to be able to carry 100 kg payload, including its own weight. The mechanical components are presented and the sizing of the magnetic tracks is detailed. All computation is embedded in order to reduce time delays between processes and to keep the robot functional even in case of signal loss with the ground station. The main sensor of the robot is a 2D laser scanner, that gives information on the hull surface and is used for several tasks. We focus on the welding task and expose the control algorithm that allows the robot to follow a straight line for the welding process.