Ion mobility-mass spectrometry (IM-MS) has become a technology deployed across a wide range of structural biology applications despite the challenges in characterizing closely related protein structures. Collision-induced unfolding (CIU) has emerged as a valuable technique for distinguishing closely related, iso-cross-sectional protein and protein complex ions through their distinct unfolding pathways in the gas phase. With the speed and sensitivity of CIU analyses, there has been a rapid growth of CIUbased assays, especially regarding biomolecular targets that remain challenging to assess and characterize with other structural biology tools. With information-rich CIU data, many software tools have been developed to automate laborious data analysis. However, with the recent development of new IM-MS technologies, such as cyclic IM-MS, CIU continues to evolve, necessitating improved data analysis tools to keep pace with new technologies and facilitating the automation of various data processing tasks. Here, we present CIUSuite 3, a software package that contains updated algorithms that support various IM-MS platforms and supports the automation of various data analysis tasks such as peak detection, multidimensional classification, and collision cross section (CCS) calibration. CIUSuite 3 uses local maxima searches along with peak width and prominence filters to detect peaks to automate CIU data extraction. To support both the primary CIU (CIU 1 ) and secondary CIU (CIU 2 ) experiments enabled by cyclic IM-MS, two-dimensional data preprocessing is deployed, which allows multidimensional classification. Our data suggest that additional dimensions in classification improve the overall accuracy of class assignments. CIUSuite 3 also supports CCS calibration for both traveling wave and drift tube IM-MS, and we demonstrate the accuracy of a new single-field CCS calibration method designed for drift tube IM-MS leveraging calibrant CIU data. Overall, CIUSuite 3 is positioned to support current and next-generation IM-MS and CIU assay development deployed in an automated format.