In order to investigate continuous vortex dynamics based on a Lagrangian-like formulation, we develop a theoretical framework and a numerical method for computation of the evolution of a vortex-surface field (VSF) in viscous incompressible flows with simple topology and geometry. Equations describing the continuous, timewise evolution of a VSF from an existing VSF at an initial time are first reviewed. Non-uniqueness in this formulation is resolved by the introduction of a pseudo-time and a corresponding pseudo-evolution in which the evolved field is 'advected' by frozen vorticity onto a VSF. A weighted essentially non-oscillatory (WENO) method is used to solve the pseudo-evolution equations in pseudo-time, providing a dissipativelike regularization. Vortex surfaces are then extracted as iso-surfaces of the VSFs at different real physical times. The method is applied to two viscous flows with Taylor-Green and Kida-Pelz initial conditions respectively. Results show the collapse of vortex surfaces, vortex reconnection, the formation and roll-up of vortex tubes, vorticity intensification between anti-parallel vortex tubes, and vortex stretching and twisting. A possible scenario for understanding the transition from a smooth laminar flow to turbulent flow in terms of topology of vortex surfaces is discussed.