In this work time resolved optogalvanic signals associated with transitions excited from the first metastable state of neon and krypton have been studied. These gases have similar energy state configurations and it is of significant interest to study their time resolved optogalvanic waveforms resulting from transitions belonging to the states of same quantum numbers. The experimentally observed optogalvanic signals recorded for different discharge currents have been fitted to a theoretical model to obtain parameters that determine amplitudes, instrumental time constants and decay rates of the 1s levels.