2005
DOI: 10.1007/s00021-005-0192-4
|View full text |Cite
|
Sign up to set email alerts
|

Collisions and Regularization for the 3-Vortex Problem

Abstract: We study the dynamics of 3 point-vortices on the plane for a fluid governed by Euler's equations, concentrating on the case when the moment of inertia is zero. We prove that the only motions that lead to total collisions are self-similar and that there are no binary collisions. Also, we give a regularization of the reduced system around collinear configurations (excluding binary collisions) which smoothes out the dynamics.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
3

Year Published

2014
2014
2022
2022

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(14 citation statements)
references
References 4 publications
0
11
0
3
Order By: Relevance
“…ii) We omitted the possibility of collisions. See [29], [30] for collisions and regularizations for 3 and 4 vortex motions on the plane.…”
Section: Remarkmentioning
confidence: 99%
“…ii) We omitted the possibility of collisions. See [29], [30] for collisions and regularizations for 3 and 4 vortex motions on the plane.…”
Section: Remarkmentioning
confidence: 99%
“…It is natural to explore configurations that rotate rigidly in a framework of dynamical systems, studying the planar relative equilibria of n-vortex problem. The case of three-vortices has been widely studied by Gröbli [5], Kossin and Schubert [10] and Hernández-Garduño and Lacomba [9]. Equilateral triangles are always relative equilibria.…”
Section: Introductionmentioning
confidence: 99%
“…Para el problema general de tres vórtices, las ecuaciones de movimiento se pueden escribir en términos de las distancias al cuadrado de los mismos. Ese es el punto de vista que adoptamos en esta sección, tomando como motivación las ideas planteadas en [16].…”
Section: Ecuaciones De Movimiento Usando El Cuadrado De Las Distanciasunclassified
“…Concluyamos el capítulo verificando que, como se afirmó en el inciso 4 del listado de trayectorias que acabamos de discutir, los centros de losóvalos encerrados por la separatriz corresponden a las tres colisiones binarias. (Notemos que, como se observa en nuestros diagramas de flujo y como se prueba en [16], no hay soluciones dinámicas que terminen en colisión binaria.) A partir de la figura 6.5 podemos estimar que las colisiones binarias ocurren en θ = −π/2 + n 2π 3 , n = 0, 1, 2, y z = 0.…”
Section: Colisiones Binariasunclassified