Abstract.Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Numerous observations of CCN number concentration exist, and many closure studies have been performed to predict CCN number concentrations based on particle number size 5 distributions, chemical composition, and the κ-Köhler theory. Most of these studies provide details for short time periods or focus on special environmental conditions. These observations, however, cannot address questions of large-scale temporal and spatial CCN variability. Here we analyze long-term observations of CCN number concentrations, particle number size distributions and chemical composition from twelve sites on three continents. Eight of these stations are part of the European Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS). 10We group the observatories into categories according to their official classification: coastal background (Barrow, Alaska; Mace Head, Ireland; Finokalia, Crete; Noto Peninsula, Japan), rural background (Melpitz, Germany; Cabauw, the Netherlands; Vavihill, Sweden), alpine sites (Puy de Dôme, France; Jungfraujoch, Switzerland), remote forest sites (ATTO, Brazil; SMEAR, Finland) and the urban environment (Seoul, South Korea). Expectedly, CCN characteristics are highly variable across regions. However, they also vary within categories, most strongly in the coastal background group, where 15 CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behavior, most continental stations exhibit very similar relative activation ratios across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the activation ratios spread more widely across the SS spectrum.Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g., atBarrow (Arctic Haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), 20 the rain forest (wet and dry season), or Finokalia (forest fire influence in fall). The rural background and urban sites exhibit relatively little variability throughout the year while short-term variability can be high especially at the urban site.The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles, was highest at the coastal site of Mace Head (0.6) and the lowest at the rain forest station ATTO (0.2 -0.3). We performed closure studies to predict CCN number concentrations from the particle number size distribution and chemical composition measurements. 25The prediction accuracy for the average concentrations is high. The ratio between predicted and measured CCN concentrations is between 0.87 and 1.4. The temporal variability is also well represented, as reflected by Pearson c...