Collocation approximation by deep neural ReLU networks for parametric and stochastic PDEs with lognormal inputs
Dung Dinh
Abstract:We find the convergence rates of the collocation approximation by deep ReLU neural networks of solutions to elliptic PDEs with lognormal inputs, parametrized by $\boldsymbol{y}$ in the noncompact set ${\mathbb R}^\infty$. The approximation error is measured in the norm of the Bochner space $L_2({\mathbb R}^\infty, V, \gamma)$, where $\gamma$ is the infinite tensor-product
standard Gaussian probability measure on ${\mathbb R}^\infty$ and $V$ is the energy space. We also obtain similar dimension-independent resu… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.