Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
ObjectiveAvoidant/restrictive food intake disorder (ARFID) is an eating disorder characterized by a severely restrictive diet leading to significant physical and/or psychosocial sequelae. Largely owing to the phenotypic heterogeneity, the underlying pathophysiological mechanisms are relatively unknown. Recently, the communication between microorganisms within the gastrointestinal tract and the brain—the so‐called microbiota‐gut‐brain axis—has been implicated in the pathophysiology of eating disorders. This Spotlight review sought to investigate and conceptualize the possible ways that the microbiota‐gut‐brain axis is involved in ARFID to drive future research in this area.MethodBy relating core symptoms of ARFID to gut microbiota and its signaling pathways to the brain, we evaluated how the gut microbiota is potentially involved in the pathophysiology of ARFID.ResultsWe hypothesized that the restricted type and amount of food intake characteristic of ARFID diminishes gut microbial diversity, including beneficial bacteria and their metabolites capable of signaling to the brain, to modulate biopsychological pathways relevant to ARFID: homeostatic signaling, food reward, interoception, sensory sensitivity, disgust, perseveration, fear‐based learning, and mood. Candidate signaling mechanisms include microbial‐induced effects on inflammation, cortisol, and neurotransmitters such as dopamine and serotonin.DiscussionThrough reviewing the extant evidence, we conceptualized a new theoretical framework of ARFID with an emphasis on microbiota‐gut‐brain axis signaling to inform future research. Although more research is necessary to evaluate this theoretical model, the tentative evidence suggests that therapeutics specifically targeting the gut microbiota for the treatment of ARFID symptomatology warrants more investigation.
ObjectiveAvoidant/restrictive food intake disorder (ARFID) is an eating disorder characterized by a severely restrictive diet leading to significant physical and/or psychosocial sequelae. Largely owing to the phenotypic heterogeneity, the underlying pathophysiological mechanisms are relatively unknown. Recently, the communication between microorganisms within the gastrointestinal tract and the brain—the so‐called microbiota‐gut‐brain axis—has been implicated in the pathophysiology of eating disorders. This Spotlight review sought to investigate and conceptualize the possible ways that the microbiota‐gut‐brain axis is involved in ARFID to drive future research in this area.MethodBy relating core symptoms of ARFID to gut microbiota and its signaling pathways to the brain, we evaluated how the gut microbiota is potentially involved in the pathophysiology of ARFID.ResultsWe hypothesized that the restricted type and amount of food intake characteristic of ARFID diminishes gut microbial diversity, including beneficial bacteria and their metabolites capable of signaling to the brain, to modulate biopsychological pathways relevant to ARFID: homeostatic signaling, food reward, interoception, sensory sensitivity, disgust, perseveration, fear‐based learning, and mood. Candidate signaling mechanisms include microbial‐induced effects on inflammation, cortisol, and neurotransmitters such as dopamine and serotonin.DiscussionThrough reviewing the extant evidence, we conceptualized a new theoretical framework of ARFID with an emphasis on microbiota‐gut‐brain axis signaling to inform future research. Although more research is necessary to evaluate this theoretical model, the tentative evidence suggests that therapeutics specifically targeting the gut microbiota for the treatment of ARFID symptomatology warrants more investigation.
Emerging evidence suggests that low-grade systemic inflammation plays a key role in altering brain activity, behaviour and affect. Modulation of the gut microbiota using prebiotic fibre offers a potential therapeutic tool to regulate inflammation, mediated via the production of short-chain fatty acids (SCFA). However, the impact of prebiotic consumption on affective symptoms and the possible contribution from inflammation, gut symptoms and the gut microbiome are currently underexamined. In this 12-week study, the effects of a diverse prebiotic blend on inflammation, gut microbiota profiles and affective symptoms in a population with metabolic syndrome (MetS) were examined. Sixty males and females with MetS meeting the criteria for MetS were randomised into a treatment group (n 40), receiving 10 g per day of a diverse prebiotic blend and healthy eating advice, and a control group (n 20), receiving healthy eating advice only. Our results showed a significant reduction in high sensitivity C-reactive protein (hs-CRP) in the treatment (–0·58 [–9·96 to–2·63]) compared with control (0·37 [–3·64 to–3·32]), alongside significant improvements in self-reported affective scores in the treatment compared with the control group. While there were no differences in relative abundance between groups at week 12, there was a significant increase from baseline to week 12 in fecal Bifidobacterium and Parabacteroides in the treatment group, both of which are recognised as SCFA producers. Multivariate regression analyses further revealed an association between gastrointestinal symptoms and hs-CRP with affective scores. Together, this study provides preliminary support for a diverse prebiotic blend for mood, stress and anxiety.
The ability to manipulate brain function through the communication between the microorganisms in the gastrointestinal tract and the brain along the gut-brain axis has emerged as a potential option to improve cognitive and emotional health. Dietary composition and patterns have demonstrated a robust capacity to modulate the microbiota-gut-brain axis. With their potential to possess pre-, pro-, post-, and synbiotic properties, dietary fibre and fermented foods stand out as potent shapers of the gut microbiota and subsequent signalling to the brain. Despite this potential, few studies have directly examined the mechanisms that might explain the beneficial action of dietary fibre and fermented foods on the microbiota-gut-brain axis, thus limiting insight and treatments for brain dysfunction. Herein, we evaluate the differential effects of dietary fibre and fermented foods from whole food sources on cognitive and emotional functioning. Potential mediating effects of dietary fibre and fermented foods on brain health via the microbiota-gut-brain axis are described. Although more multimodal research that combines psychological assessments and biological sampling to compare each food type is needed, the evidence accumulated to date suggests that dietary fibre, fermented foods, and/or their combination within a psychobiotic diet can be a cost-effective and convenient approach to improve cognitive and emotional functioning across the lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.