Studies investigating microplastics, pharmaceuticals, and pesticides as contaminants of emerging concern (CECs) in surface water sources in Kenya are reviewed. Contaminants of emerging concern are chemicals that have recently been discovered that may pose a threat to the environment, aquatic life, and human life. Microplastics in surface waters range from 1.56 to as high as 4520 particles/m3, with high concentrations recorded in coastal waters. The dominant microplastics are fibers, fragments, and films, with foams, granules, and pellets making up only a small percentage. The main source of pharmaceuticals in water sources is not wastewater‐treatment plants but rather raw untreated sewage because high concentrations are found near informal settlements with poor sewage connectivity. Antibiotics are detected in the range of the limit of quantification to 320 μg/L, with sulfamethoxazole, trimethoprim, and ciprofloxacin being the most abundant antibiotics. The high frequency of detection is attributed to the general misuse of antibiotics in the country. A health risk assessment indicated that only ciprofloxacin and acetaminophen posed noncarcinogenic health risks in the Ndarugo River and Mombasa periurban creeks, respectively. Similarly, the detection of antiretroviral drugs, mainly lamivudine, nevirapine, and zidovudine, is associated with human immunodeficiency virus prevalence in Kenya. In the Lake Naivasha, Nairobi River, and Lake Victoria basins, frequently detected organochloride pesticides (OCPs) are methoxychlor, alachlor, endrin, dieldrin, endosulfan, endosulfan sulfate, α‐hexachlorocyclohexane (α‐HCH), γ‐HCH, and dichlorodiphenyltrichloroethane (DDT), some of which occur above permissible concentrations. The presence of DDT in some sites translates to illegal use or historical application. The majority of individual OCPs posed no noncarcinogenic health risk, except dieldrin and aldrin which had a hazard quotient >1 in two sites. Therefore, more surveying and regular monitoring in different regions in Kenya concerning CECs is essential to determine the spatial variability and effective measures to be taken to reduce pollution. Environ Toxicol Chem 2023;00:1–14. © 2023 SETAC.