1999). Recent estimates indicate that approximately 12% of synthetic textile dyes used each year are lost during manufacture and processing operations and 20% of these lost dyes enter the environment through effluents that result from the treatment of industrial wastewaters (Hwang and Chen, 1993;Nawar and Doma, 1989
ABSTRACTThe ability of activated carbon and different low-cost by-products and waste material as sorbents to remove various reactive dyes from aqueous solutions and wastewaters was investigated. All aqueous dye solutions contained 2,000 mg l -1 NaCl, to mimic real dye wastewater. Batch kinetic and isotherm experiments were conducted to determine the sorption-desorption behavior of the examined dyes from aqueous solutions and wastewaters by different sorbents, including activated carbon, fly ash, bentonite and bleaching earth. The results from the aqueous solutions indicate that the form of the isotherm equation is not necessarily unique for best description of both sorption and desorption data. The values of the isotherm parameters are not the same, indicating a significant hysteresis effect.Of the 9 sorption systems tested, 5 are best described by the Freundlich, 3 by the Langmuir and 1 by the linear sorption model. Of the 7 desorption systems tested, 5 are best described by the Freundlich and 2 by the linear model. In all cases, the sorption capacity for dye removal was higher for activated carbon, followed by fly-ash and then by bentonite.