A dynamic phase measuring profilometry (PMP) based on tricolor binary fringe combined time-division multiplexing principle is proposed. Only one tricolor binary fringe combined by red (R), green (G), and blue (B) binary fringes with the same fringe width but without any color overlapping one another is needed and sent into the flash memory of a high-speed digital light projector (HDLP) in advance. A specialized time-division multiplexing timing sequence is designed to control the HDLP to project the tricolor binary fringe saved in the flash memory onto the measured dynamic object separately and sequentially at 234 fps, at the same time, the projected light source mode is set as monochrome mode which means that all the RGB LEDs remain lighting. Meanwhile, it also triggers a high frame rate monochrome camera synchronized with the HDLP to capture the corresponding deformed patterns in R, G and B channels. By filtering, the nearly unbroken phase-shifting sinusoidal deformed patterns for three-step PMP can be extracted from the captured deformed patterns. It is equivalent to the three-dimensional (3D) shape reconstruction of the measured dynamic object at 78 fps. Experimental results verify the feasibility and the validity of the proposed method. It is effective for measuring the dynamic object and can avoid the color cross-talk effectively.