We formulate multi-spectral fusion and denoising for the luminance channel as a maximum a posteriori estimation problem in the wavelet domain. To deal with the discrepancy between RGB and near infrared (NIR) data in fusion, we build a discrepancy model and introduce the wavelet scale map. The scale map adjusts the wavelet coefficients of NIR data to have the same distribution as the RGB data. We use the priors of the wavelet scale map and its gradient as the contrast preservation term and gradient denoising term, respectively. Specifically, we utilize the local contrast and visibility measurements in the contrast preservation term to transfer the selected NIR data to the fusion result. We also use the gradient of NIR wavelet coefficients as the weight for the gradient denoising term in the wavelet scale map. Based on the wavelet scale map, we perform fusion of the RGB and NIR wavelet coefficients in the base and detail layers. To remove noise, we model the prior of the fused wavelet coefficients using NIR-guided Laplacian distributions. In the chrominance channels, we remove noise guided by the fused luminance channel. Based on the luminance variation after fusion, we further enhance the color of the fused image. Our experimental results demonstrated that the proposed method successfully performed the fusion of RGB and NIR images with noise reduction, detail preservation, and color enhancement.