2014 International Conference on Computer and Information Sciences (ICCOINS) 2014
DOI: 10.1109/iccoins.2014.6868362
|View full text |Cite
|
Sign up to set email alerts
|

Color space selection for human skin detection using color-texture features and neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 18 publications
(7 citation statements)
references
References 17 publications
0
6
0
1
Order By: Relevance
“…Penelitian ini lebih fokus pada komparasi ruang warna yang digunakan, ada lima ruang warna yang digunakan sebagai atribut klasifikasi warna kulit yaitu, RGB, YCbCr, YIQ, YDbDr, dan CIE l*a*b. Dataset yang digunakan bersumber dari dua dataset publik yaitu CUE dengan total 100 citra wajah dan dataset COMPAC dengan 800 citra wajah dengan berbagai variasi ras. Komparasi dari klasifikasi menggunakan Neural Network ini pada lima ruang warna yang berbeda, ternyata yang menghasilkan akurasi tertinggi adalah ruang warna YIQ pada dua dataset tersebut, yaitu CUE (92,18%) dan COMPAC (89,22%) [6].…”
Section: Pendahuluanunclassified
“…Penelitian ini lebih fokus pada komparasi ruang warna yang digunakan, ada lima ruang warna yang digunakan sebagai atribut klasifikasi warna kulit yaitu, RGB, YCbCr, YIQ, YDbDr, dan CIE l*a*b. Dataset yang digunakan bersumber dari dua dataset publik yaitu CUE dengan total 100 citra wajah dan dataset COMPAC dengan 800 citra wajah dengan berbagai variasi ras. Komparasi dari klasifikasi menggunakan Neural Network ini pada lima ruang warna yang berbeda, ternyata yang menghasilkan akurasi tertinggi adalah ruang warna YIQ pada dua dataset tersebut, yaitu CUE (92,18%) dan COMPAC (89,22%) [6].…”
Section: Pendahuluanunclassified
“…Despite that, this paper evaluates skin type's challenges only. To review the work on neural network perspective, Hani K Al-Mohair et al [13] submitted an extensive study of current work neural network perspective based human skin color detection. The aim of this article is to show different algorithms that used artificial neural network systems to detect skin color, define their techniques and assess their features and achievement.…”
Section: Related Workmentioning
confidence: 99%
“…In order to ascertain the best color spaces [27] used in color, and color texture color feature separately. In the study, the use of a popular classifier known as Multilayer Perception artificial neural network (MLP) was used for comparative analysis.…”
Section: A Comparative Studymentioning
confidence: 99%
“…Examples include images obtained under low-light conditions, legacy grayscale images and videos, and near-infrared images [87]. Furthermore, for human observers it is often the visual texture of skin that is prominent in an image in which many situations exist for which color information is either not available or not reliable [27], [79], [88]. Examples include images obtained under low-light conditions, legacy grayscale images and videos, and near-infrared images.…”
Section: ) Challenges Related To Skin Detection Without Color Informationmentioning
confidence: 99%