Novel photoluminescent carbon dots (CDs) were synthesized through a facile hydrothermal method using Hibiscus tea extract as a natural carbon source and boric acid as a boron source. The optical and physicochemical properties of the as-synthesized nitrogen- and boron-doped CDs (NB-CDs) were characterized using UV–Visible (UV–Vis), photoluminescence (PL) spectroscopy, Fourier-transform infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The as-synthesized NB-CDs showed spherical morphology of approximately 6.2 ± 0.5 nm with quantum yield (9.2%), high aqueous solubility, strong photo-stability, and excitation-dependent PL behavior. The obtained NB-CDs exhibited high stability over a wide pH range and high ionic strength. Additionally, NB-CDs exhibited PL enhancement response with excellent sensitivity toward multi-metal ions, including Ag+, Cd2+, and Cr3+ ions, with very low detection limits of 44.5, 164.4, and 54.6 nM, respectively, with a wide concentration range of 0–10 μM. Upon testing the cytotoxicity of the NB-CDs at a concentration of 20 μg/mL for 24 h, we found no obvious inhibition of cell viability. Therefore, the proposed sensor method can be successfully applied to detect Ag+, Cd2+, and Cr3+ ions in cell imaging as well as in real water environmental samples.