Several advances in recent years have focused increasing attention on the role of the RAF-MEK-ERK1/2 pathway in promoting cell survival. The demonstration that BRAF is a human oncogene mutated at high frequency in melanoma, thyroid and colon cancer has provided a pathophysiological context, whilst the description of potent and highly selective inhibitors of BRAF or MEK has allowed a more informed and rational intervention in both normal and tumour cells. In addition, separate studies have uncovered new mechanisms by which the ERK1/2 pathway can control the activity or abundance of members of the BCL-2 protein family to promote cell survival. It is now apparent that various oncogenes co-opt ERK1/2 signalling to de-regulate these BCL-2 proteins and this contributes to, and even underpins, survival signalling in some tumours. New oncogene-targeted therapies allow direct or indirect inhibition of ERK1/2 signalling and can cause quite striking tumour cell death. In other cases, inhibition of the ERK1/2 pathway may be more effective in combination with other conventional and novel therapeutics. Here, we review recent advances in our understanding of how the ERK1/2 pathway regulates BCL-2 proteins to promote survival, how this is de-regulated in tumour cells and the opportunities this might afford with the use of new targeted therapies.