Alterations of cytosolic Ca 2ϩ activity participate in the regulation of a wide variety of cellular functions including excitation-contraction coupling, exocytosis, migration, cell proliferation, and cell death (1-4). Cytosolic Ca 2ϩ is increased by release of Ca 2ϩ from intracellular stores and/or Ca 2ϩ entry across the cell membrane (5). Ca 2ϩ release from intracellular stores results in the stimulation of Ca 2ϩ release-activated Ca 2ϩ channel (CRAC) 2 (6, 7), which consists of the pore forming units Orai1, -2, and/or -3 (8 -10) and the endoplasmic reticulum-located regulatory subunit STIM1 or -2 (11-13). The stimulation of the channel leads to the inward current I CRAC and the store-operated Ca 2ϩ entry (SOCE). Recent observations uncovered the powerful stimulation of I CRAC and SOCE by the serum and glucocorticoid-inducible kinase SGK1 (14), a kinase stimulated by growth factors and involved in stress response (15) and regulation of cell survival (16). SGK1 is partially effective through phosphorylation of the ubiquitin ligase Nedd4-2 (neuronal precursor cells expressed developmentally down-regulated). Nedd4-2 ubiquitinates Orai1, thus preparing the channel protein for degradation (14). The effect of Nedd4-2 on Orai1 parallels that of Nedd4-2 on the epithelial Na ϩ channel ENaC (16, 17). The phosphorylation of Nedd4-2 leads to binding of the ubiquitin ligase to the protein 14-3-3, which prevents the interaction with the channel protein (18). Accordingly, SGK1 enhances Orai1 protein abundance in the cell membrane (14). STIM is similarly regulated by ubiquitination (19). However, the effect of SGK1 on Orai1 protein abundance is only in part explained by Nedd4-2-dependent protein degradation. Therefore, further experiments were performed to explore whether SGK1, in addition, stimulates Orai1 and/or STIM1 expression. As a matter of fact, RT-PCR revealed an increase of Orai1 and STIM1 transcript levels after expression of constitutively active SGK1. Thus, further experiments were performed to uncover the transcription factor involved. Previously, SGK1 has been shown to foster nuclear translocation and activation of nuclear factor B (NF-B) (20 -22). Accordingly, this study explored the putative involvement of NF-B subunits p65 (RELA), p50 (NFKB1), and p52 (NFKB2) in the regulation of Orai1 and STIM1 expression.
EXPERIMENTAL PROCEDURES