PurposeThis project attempts to present a space component inventory classification system for space inventory replenishment and management. The authors propose to adopt a classification system that can incorporate all the different variables in a multi-criteria configuration. Fuzzy logic is applied as an effective way for formulating classification problems in space inventory replenishment.Design/methodology/approachA fuzzy-based approach with ABC classification is proposed to incorporate all the different variables in a multi-criteria configuration. Fuzzy logic is applied as an effective way for formulating classification problems in space inventory replenishment of the soil preparation system (SOPSYS) which is used in grinding and sifting Phobos rocks to sub-millimeter size in the Phobos-Grunt space mission. An information system was developed using the existing platform and was used to support the key aspects in performing inventory classification and purchasing optimization.FindingsThe proposed classification system was found to be able to classify the inventory and optimize the purchasing decision efficiency. Based on the information provided from the system, implementation plans for the SOPSYS project and related space projects can be proposed.Research limitations/implicationsThe paper addresses one of the main difficulties in handling qualitative or quantitative classification criteria. The model can be implemented using mathematical calculation tools and integrated into the existing inventory management system. The proposed model has important implications in optimizing the purchasing decisions to shorten the research and development of other space instruments in space missions.Originality/valueInventory management in the manufacture of space instruments is one of the major problems due to the complexity of the manufacturing process and the large variety of items. The classification system can optimize purchasing decision-making in the inventory management process. It is also designed to be flexible and can be implemented for the manufacture of other space mission instruments.