The complex microenvironment of diabetic wounds often hinders the healing process, ultimately leading to the formation of diabetic foot ulcers and even death. Dual monitoring and treatment of wounds can significantly reduce the incidence of such cases. Herein, a multifunctional Janus membrane (3D chitosan sponge-ZE/polycaprolactone nanofibers-ZP) was developed by incorporating the zinc metal−organic framework, europium metal−organic framework, and phenol red into nanofibers for diabetic wound monitoring and treatment. The directional water transport capacity of the resulting Janus membrane allows for unidirectional and irreversible drainage of wound exudate, and the multifunctional Janus membrane creates up to a 99% antibacterial environment, both of which can treat wounds. Moreover, the pH (5−8) and H 2 O 2 (0.00−0.80 μM) levels of the wound can be monitored using the color-changing property of phenol red and the fluorescence characteristic of Eu-MOF on the obtained membrane, respectively. The healing stages of the wound can also be monitored by analyzing the RGB values of the targeted membrane images. This design can more accurately reflect the wound state and treat the wound to reduce bacterial infection and accelerate wound healing, which has been demonstrated in in vivo experiments. The results provide an important basis for early intervention in diabetic patients.