Hydrogen-bonding with fluoride is a key interaction encountered when analyzing the mode of action of 5'-fluoro-5'-deoxyadenosine synthase, the only known enzyme capable of catalyzing the formation of a C-F bond from F -. Further understanding of the effect of hydrogen-bonding on the structure and reactivity of complexed fluoride is therefore important for catalysis and numerous other applications, such as anion supramolecular chemistry. Herein we disclose a detailed study examining the structure of 18 novel urea-fluoride complexes in the solid state, by X-ray and neutron diffraction, and in solution phase and explore the reactivity of these complexes as a fluoride source in SN2 chemistry. Experimental data show that the structure, coordination strength and reactivity of the urea-fluoride complexes are tunable by modifying substituents on the urea receptor. Hammett analysis of aryl groups on the urea indicates that fluoride binding is dependent on σ p and σ m parameters with stronger binding being observed for electron-deficient urea ligands. For the first time, defined urea-fluoride complexes are used as fluoride-binding reagents for the nucleophilic substitution of a model alkyl bromide. The reaction is slower in comparison with known alcohol-fluoride complexes, but S N 2 is largely favored over E2, at a ratio surpassing all hydrogen-bonded complexes documented in the literature for the model alkyl bromide employed. Increased second-order rate constants at higher dilution support the hypothesis that the reactive species is a 1:1 urea-fluoride complex of type [UF] -(U=urea) resulting from partial dissociation of the parent compound [U 2 F] -. The dissociation processes can be quantified through a combination of UV and NMR assays, including DOSY and HOESY analyses that illuminate the complexation state and H-bonding in solution.