This review article highlights recent advances in designing biomaterials to be interfaced with food and plants, with the goal of enhancing the resilience of the AgroFood infrastructure by boosting crop production, mitigating environmental impact, and reducing losses along the supply chain. Special attention is given to innovations in biomaterial-based approaches and platforms for 1) seed enhancement through encapsulation, preservation, and controlled release of payloads (e.g., plant growth-promoting microbes) to the seeds and their rhizosphere; 2) precision delivery of multi-scale payloads to targeted plant tissues, organelles, and vasculature; 3) edible food coatings that regulate gas exchanges and provide antimicrobial properties to extend the shelf life of perishable food; and 4) food spoilage detection based on different sensor/reporter systems. Within each domain, biomaterials design principles, emerging micro-/nanofabrication strategies, and the advantages and disadvantages of different delivery/preservation/sensing platforms are introduced and critically discussed. Views of future requirements, aims, and trends are also given based on the opportunities and challenges of applying biomaterials in the AgroFood system.