In this review, an overview of acoustic- and radio-frequency frequency dielectric properties of multiferroic oxides, the significant dynamic response of electrical polarization to small external ac electrical fields, are present based on the reports in literatures and our recent experimental progresses. The review is begun with some basic terms, concepts and mechanisms associated with dielectric response and dielectric anomalies, namely dielectric peak and plateau upon varying temperatures and dielectric relaxations upon varying frequencies. Subsequently, a variety of quantitative analyses and descriptions of various dielectric effects, including dielectric relaxation, relaxational and transport dynamics, ac conductivity, equivalent circuit models and impedance spectroscopy, are summarized in details. Next is the kernel section. We thoroughly outline various physical mechanisms behind acoustic-/radio-frequency dielectric responses and anomalies of multiferroic oxides. Spin order transition/spin rotation, charge disorder-order transition, exchange striction of the spin interactions, spin-dependent p-d hybridization mechanism, quantum electric-dipole liquids, the interaction of spin order and quantum paraelectric, the motions of charged defects and carriers, quasi-intrinsic and extrinsic heterogeneous interfaces, polar relaxor and multiglass, ferroic domain wall/boundary motions, etc, are involved in these mechanisms. Meanwhile, particular emphasis is placed on intrinsic or extrinsic magnetodielectric effects and related mechanisms in multiferroic oxides. Finally, the review ends with a short perspective of future dielectric research in multiferroic oxides. This review is able to provide the detailed and unique insights into abundant underlying fundamental physics in multiferroic oxides as well as the potential multiferroics-based technological applications.