The crystal and magnetic structure of (La 0.50 Ca 0.50 )(Mn 1−x B x )O 3 (x = 0.00, 0.03, 0.08; B = Cr, Ni) has been investigated between 5 and 300 K by means of dc magnetic measurements and neutron powder diffraction followed by Rietveld refinement. In the pristine compound an orthorhombic to monoclinic phase transition is detected on cooling, accompanied by a CE-type antiferromagnetic (AFM) ordering arising. Ni 2+ and Cr 3+ substitutions have similar effects on the structural and magnetic properties of (La 0.50 Ca 0.50 )MnO 3 , despite the fact that these ions are characterized by different external electronic configurations. After substitution, the orthorhombic to monoclinic phase transition is hindered. As a consequence, charge and orbital orderings are suppressed, as is the superexchange; double exchange takes place inducing ferromagnetic (FM) interactions. No evidence for stable magnetic interaction between Cr 3+ or Ni 2+ and the neighbouring Mn ions was detected. Nevertheless, in the Ni-substituted samples a detectable quantity of monoclinic phase forms during cooling, inside which AFM interactions take place. The amount of this secondary monoclinic phase decreases on increasing Ni substitution; the global FM magnetic moment decreases as well, due to a spin-cluster glass-type state arising. As a result a FM state is found to coexist with a spin-cluster glass-type state.