The development of non‐black asphalt mixtures for surface courses may play a significant role to improve functional, aesthetic and environmental issues of road pavements. Nowadays, the development of clear binders as substitutes for traditional bitumen in asphalt mixtures, which combine durability and mechanical properties, exalting the color of pavements for a better integration of road networks in urban and environmentally sensitive areas, is undoubtedly a timing challenge. However, the selection and classification of clear binders are often based only on color and standard requirements referred to traditional bitumen that do not describe consistently the binder behavior. A better understanding on clear binder properties is required to guide the aggregate selection and the mix design for surface layer, merging safety, aesthetical and environmental benefits into long lasting pavement. This paper presents a comprehensive experimental program, including empirical tests, infrared spectrum analysis, and rheological testing over a wide range of temperature and frequency, to determine the overall mechanical behavior of three clear binders. Results highlighted that the selected clear binders differ from traditional bitumen in terms of mechanical behavior. Different composition or origin can induce to completely different performance. Moreover, the combination of several testing procedures allowed suggesting specific application methods and uses for the three clear binders.