Understanding of genetic mechanisms underlying variation in sexual dichromatism remains limited, especially for carotenoid‐based colors. We addressed this knowledge gap in a gene expression study with threespine stickleback. We compared male and female throat tissues across five populations, including two in which female red coloration has evolved convergently. We found that the expression of individual genes, gene ontologies, and coexpression networks associated with red female color within a population differed between California and British Columbia populations, suggesting differences in underlying mechanisms. Comparing females from each of these populations to females from populations dominated by dull females, we again found extensive expression differences. For each population, genes and networks associated with female red color showed the same patterns for males only inconsistently. The functional roles of genes showing correlated expression with female color are unclear within populations, whereas genes highlighted through inter‐population comparisons include some previously suggested to function in carotenoid pathways. Among these, the most consistent patterns involved
TTC39B
(Tetratricopeptide Repeat Domain 39B), which is within a known red coloration QTL in stickleback and implicated in red coloration in other taxa.