Molecular imaging techniques as well as nanoparticle applicable to molecular imaging are being explored to improve the cancer detection accuracy, which help to manage efficiently at the early stage. Among the various imaging technologies, optical imaging is a highly sensitive detection technique that allows direct observation of specific molecular events, biological pathways, and disease processes in real time through imaging probes that emit light in a range of wavelengths. Recently, nanoparticles have provided significant progresses that can be simultaneously used for cancer diagnosis and therapy (cancer theranostics). Theranostics aims to provide "image-guided cancer therapy," by integrating therapeutic and imaging agents in a single platform. In addition, molecular imaging techniques facilitate "image-guided surgery" enabling maximization of tumor excision and minimization of side effects. The optical signals generated by fluorescence nanoparticles offer the possibility to distinguish tumor sites and normal tissues during surgery by real-time guidance, thereby increasing the long-term patient survival. These techniques will considerably contribute to reducing cancer recurrence and developing more effective cures. In this chapter, we will introduce diverse research on nanomaterials-based optical imaging for effective cancer therapy.