In this paper, we present a new technique of image forgery detection. The proposed technique uses digital signatures embedded in the least significant bits of the selected pixels of each row and column. The process maintains a symmetry in the use of pixels for computing and hiding the digital signatures. Each row and column of the image symmetrically contributes to both processes, with the number of pixels per row or column used for computing the signature, and the pixels used for embedding are not equal and are asymmetric. The pixels in each row and column of an image are divided into two groups. One group contains pixels of a row or column used in the calculation of digital signatures, and the second group of pixels is used for embedding the digital signatures of the respective row or column. The digital signatures are computed using the hash algorithm, e.g., message digest five (MD5). The least significant bits substitution technique is used for embedding the computed digital signature in the least significant bits of the selected pixels of the corresponding row or column. The proposed technique can successfully detect the modification made in an image. The technique detects pixel level modification in a single or multiple pixels.