The APT attack on the Internet is becoming more serious, and most of intrusion detection systems can only generate alarms to some steps of APT attack and cannot identify the pattern of the APT attack. To detect APT attack, many researchers established attack models and then correlated IDS logs with the attack models. However, the accuracy of detection deeply relied on the integrity of models. In this paper, we propose a new method to construct APT attack scenarios by mining IDS security logs. These APT attack scenarios can be further used for the APT detection. First, we classify all the attack events by purpose of phase of the intrusion kill chain. Then we add the attack event dimension to fuzzy clustering, correlate IDS alarm logs with fuzzy clustering, and generate the attack sequence set. Next, we delete the bug attack sequences to clean the set. Finally, we use the nonaftereffect property of probability transfer matrix to construct attack scenarios by mining the attack sequence set. Experiments show that the proposed method can construct the APT attack scenarios by mining IDS alarm logs, and the constructed scenarios match the actual situation so that they can be used for APT attack detection.