2015
DOI: 10.1080/00031305.2015.1081619
|View full text |Cite
|
Sign up to set email alerts
|

Combating Anti-Statistical Thinking Using Simulation-Based Methods Throughout the Undergraduate Curriculum

Abstract: Abstract:The use of simulation-based methods for introducing inference is growing in popularity for the Stat 101 course, due in part to increasing evidence of the methods ability to improve students' statistical thinking. This impact comes from simulation-based methods (a) clearly presenting the overarching logic of inference, (b) strengthening ties between statistics and probability/mathematical concepts, (c) encouraging a focus on the entire research process, (d) facilitating student thinking about advanced … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
47
0
2

Year Published

2017
2017
2023
2023

Publication Types

Select...
6
4

Relationship

0
10

Authors

Journals

citations
Cited by 48 publications
(49 citation statements)
references
References 24 publications
0
47
0
2
Order By: Relevance
“…Resampling approaches have become increasingly important in statistical education (Tintle et al, 2015;Hesterberg, 2015). The mosaic package provides simplified functionality to support teaching inference based on randomization tests and bootstrap methods.…”
Section: Randomization and Resamplingmentioning
confidence: 99%
“…Resampling approaches have become increasingly important in statistical education (Tintle et al, 2015;Hesterberg, 2015). The mosaic package provides simplified functionality to support teaching inference based on randomization tests and bootstrap methods.…”
Section: Randomization and Resamplingmentioning
confidence: 99%
“…Los métodos de computación intensiva mediante simulación para la realización de inferencias han ido ganando presencia en las propuestas de enseñanza de la Estadística en el nivel introductorio y han comenzado a incluirse parcial o totalmente, por ejemplo, en los manuales y libros de texto (véase p.e. Diez, Barr y Cetinkaya-Rundel, 2014;Lock et al, 2012;Tintle, Chance, Cobb, Rossman et al, 2015). Baste este último apunte como reflexión final sobre la necesidad de mantener una mirada atenta y de futuro sobre los desarrollos tanto disciplinares como metodológicos en un área docente actualmente en fuerte evolución.…”
Section: Consideraciones Finalesunclassified
“…Journal editors have suggested the drastic step of banning null hypothesis significance testing (Trafimow and Marks 2015), and the statistics community has responded with both enthusiasm (McShane and Gal 2016;White and Gorard 2017) and skepticism (Carlin 2016;Wasserstein and Lazar 2016). Simulationbased inference has become a popular alternative in the statistics education community to traditional inferential statistics (Tintle et al 2015;Maurer and Lock 2016;Hildreth, Robison-Cox, and Schmidt 2018;Case, Battles, and Jacobbe 2019), and may help address persistent misconceptions about inference. These changes to the curriculum have been incorporated in many "Stat 101" courses, however, it is unclear what, if any, changes have been made in discipline-specific statistics courses to address both recent controversies and advances in statistics.…”
Section: Introductionmentioning
confidence: 99%