Lower respiratory tract infections (LRTIs) present a significant global health burden, exacerbated by the rise in antimicrobial resistance (AMR). The persistence and evolution of multidrug-resistant bacteria intensifies the urgency for alternative treatments. This review explores bacteriophage (phage) therapy as an innovative solution to combat bacterial LRTIs. Phages, abundant in nature, demonstrate specificity towards bacteria, minimal eukaryotic toxicity, and the ability to penetrate and disrupt bacterial biofilms, offering a targeted approach to infection control. The article synthesises evidence from systematic literature reviews spanning 2000–2023,
in vitro
and
in vivo
studies, case reports and ongoing clinical trials. It highlights the synergistic potential of phage therapy with antibiotics, the immunophage synergy in animal models, and the pharmacodynamics and pharmacokinetics critical for clinical application. Despite promising results, the article acknowledges that phage therapy is at a nascent stage in clinical settings, the challenges of phage-resistant bacteria, and the lack of comprehensive cost-effectiveness studies. It stresses the need for further research to optimise phage therapy protocols and navigate the complexities of phage–host interactions, particularly in vulnerable populations such as the elderly and immunocompromised. We call for regulatory adjustments to facilitate the exploration of the long-term effects of phage therapy, aiming to incorporate this old-yet-new therapy into mainstream clinical practice to tackle the looming AMR crisis.