BACKGROUND: Minimally invasive resuscitative endovascular balloon occlusion of the aorta (REBOA) following noncompressible hemorrhage results in significant ischemia reperfusion injury (IRI). Adverse outcomes from IRI include organ dysfunction and can result in profound hemodynamic and molecular compromise. We hypothesized that adenosine, lidocaine, and magnesium (ALM) attenuates organ injury and inflammation responses following REBOA IRI in a porcine model of hemorrhage.
METHODS:Animals underwent a 20% controlled hemorrhage followed by 45 minutes of supraceliac balloon occlusion. They were randomized into two groups: control (n = 9) and ALM intervention (n = 9) to include a posthemorrhage, pre-REBOA bolus (200 mL of 3% NaCl ALM) followed by a continuous drip (2 mL/kg per hour of 0.9% NaCl ALM) during the 4-hour resuscitative period. Primary outcomes included hemodynamic parameters, gene expression of inflammatory signaling molecules, and plasma concentrations of select cytokines and chemokines.
RESULTS:The ALM cohort demonstrated a significant reduction in cardiac output and cardiac index. Plasma concentrations of interleukin 2 and interleukin 10 were significantly lower 3 hours post-REBOA in animals treated with ALM versus vehicle. Interleukin 4 levels in plasma were also lower with ALM at 3 and 4 hours post-REBOA ( p < 0.05). Liver expression of IL1RN, MTOR, and LAMP3 messenger RNA was significantly lower with ALM as compared with the vehicle. No significant difference in large bowel gene expression was observed between treatments. CONCLUSION: In a porcine model of hemorrhage, ALM treatment mitigated inflammatory responses early during post-REBOA resuscitation. Our findings suggest that ALM use with trauma may reduce inflammatory injury and improve outcomes related to REBOA utilization.