Background Biparametric MRI (comprising T2-weighted MRI and apparent diffusion coefficient maps) is increasingly being used to characterise prostate cancer. Although previous studies have combined Prostate Imaging-Reporting & Data System (PI-RADS)-based MRI findings with routinely available clinical variables and with deep learning-based imaging predictors, respectively, for prostate cancer risk stratification, none have combined all three. We aimed to construct an integrated nomogram (referred to as ClaD) combining deep learning-based imaging predictions, PI-RADS scoring, and clinical variables to identify clinically significant prostate cancer on biparametric MRI.Methods In this retrospective multicentre study, we included patients with prostate cancer, with histopathology or biopsy reports and a screening or diagnostic MRI scan in the axial view, from four cohorts in the USA (from University Hospitals Cleveland Medical Center, Icahn School of Medicine at Mount Sinai, Cleveland Clinic, and Long Island Jewish Medical Center) and from the PROSTATEx Challenge dataset in the Netherlands. We constructed an integrated nomogram combining deep learning, PI-RADS score, and clinical variables (prostate-specific antigen, prostate volume, and lesion volume) using multivariable logistic regression to identify clinically significant prostate cancer on biparametric MRI. We used data from the first three cohorts to train the nomogram and data from the remaining two cohorts for independent validation. We compared the performance of our ClaD integrated nomogram with that of integrated nomograms combining clinical variables with either the deep learning-based imaging predictor (referred to as DIN) or PI-RADS score (referred to as PIN) using area under the receiver operating characteristic curves (AUCs). We also compared the ability of the nomograms to predict biochemical recurrence on a subset of patients who had undergone radical prostatectomy. We report cross-validation AUCs as means for the training set and used AUCs with 95% CIs to assess the performance on the test set. The difference in AUCs between the models were tested for statistical significance using DeLong's test. We used log-rank tests and Kaplan-Meier curves to analyse survival.
FindingsWe investigated 592 patients (823 lesions) with prostate cancer who underwent 3T multiparametric MRI at five hospitals in the USA between Jan 8, 2009, and June 3, 2017. The training data set consisted of 368 patients from three sites (the PROSTATEx Challenge cohort [n=204], University Hospitals Cleveland Medical Center [n=126], and Icahn School of Medicine at Mount Sinai [n=38]), and the independent validation data set consisted of 224 patients from two sites (Cleveland Clinic [n=151] and Long Island Jewish Medical Center [n=73]). The ClaD clinical nomogram yielded an AUC of 0•81 (95% CI 0•76−0•85) for identification of clinically significant prostate cancer in the validation data set, significantly improving performance over the DIN (0•74 [95% CI 0•69−0•80], p=0•0005) and PIN (0•76...