Abstract. Electric traction vehicles cooperating with a 3kV DC traction system and equipped with drive systems based on voltage source inverters are the most significant sources of disturbances for a railway signalling system. Every traction vehicle to be authorised for operation on railway lines must fulfil the limits imposed on current harmonics magnitudes and those provided by railway operators. The solution introduced for prototypes of most modern traction drives is to replace the two-level inverters with three-level topology. Therefore, it is essential to establish the influence of the new solution on the railway signalling system. This paper presents a comparative analysis between simulation results delivered for two and three-level traction drive system regarding generation of disturbing current harmonics. Two types of VSI modulation techniques were taken under consideration: sinusoidal PWM (SPWM) and a new one, proposed by the authors, based on selective harmonic elimination (SHE). Furthermore, the authors presented application of one of the SHE based optimization techniques for shaping the EMU's (electric multiple unit) DC side input current harmonics spectrum in order to meet the required limits. The described technique is based on off-line generation of a set of solutions for each of the VSI operating points and selection of the best solution for the assumed criteria. The applied simulation models and the concept of SHE control were verified in a laboratory by means of a low-power drive stand. Using the three-level inverter in traction drives system results in less current harmonics than using two-level topology without modification of the modulation technique. Thus, it does not guarantee fulfilling all limits assumed in this paper. The proposed modulation technique allows for fulfilling the limits, and the technical implementation of the proposed technique in a traction drive system will be considered in future studies. fore, it generates less current and torque harmonics, resulting in lesser power losses and increased life-time of the drive. Another problem is developing a control strategy to make this type of inverters suitable for operation in traction and industrial environment. The application of a direct torque control (DTC) strategy for this purpose was presented in [6].The preferred topology of the three-level inverter for traction application seems to be the neutral point clamped NPC topology (Fig. 3b). This solution requires an additional modification of modulation to eliminate the neutral point voltage fluctuations [5,7,8].