Hepatic fibrogenesis involves the activation of hepatic stellate cells (HSCs), which synthesize excess extracellular matrix and contribute to the development of liver fibrosis. In a prior study we tested the effect of combined treatment with taurine, epigallocatechin gallate and genistein on the development of alcohol-induced liver fibrosis in vitro. In this study, the biological activity of the combination of these molecules was assessed by measuring its effect on cell proliferation, fibrosis-related gene expression, and proteomic expression profiling in the activated HSC cell line, HSC-T6. HSC-T6 cells were incubated with different concentrations of the drug combination taurine, epigallocatechin gallate and genistein. Cell proliferation was evaluated by MTT assay. Transforming growth factor β1 (TGF-β1), collagen type I (Col-I), matrix metalloproteinase-2 (MMP-2), and tissue inhibitor of metalloproteinases 1 and 2 (TIMP-1 and TIMP-2) mRNA were analyzed by semi-quantitative reverse-transcription PCR. Proteomic profiling of HSC-T6 cells was also performed by SELDI-TOF-MS. Combined drug treatment significantly inhibited cell proliferation and TGF-β1, Col-I, TIMP-1 and TIMP-2 mRNA expression in activated HSC-T6 cells, while the expression of MMP-2 mRNA increased. A total of 176 protein m/z peaks were identified. The intensities of 10 protein peaks were downregulated and two protein peaks were upregulated in HSC-T6 cells after combined drug treatment. In conclusion, combined drug treatment with taurine, epigallocatechin gallate and genistein can inhibit HSC proliferation, and impact fibrosis-related gene and protein expression. The antifibrotic effects of this drug combination may be due to its effects on the expression of fibrogenic genes.