The antireflection coating (ARC) on crystalline silicon solar cells plays an important role in preventing potential-induced degradation (PID). In a previous work, we reported that the module, which has an ARC prepared by plasma-enhanced chemical-vapor deposition (PE-CVD) using a hollow cathode, indicated high resistance to PID with a constant conventional refractive index (RI). In this work, we report further investigation of the high-PID-resistant ARC. The results indicate that the high-PID resistant ARC had high conductivity, high Si-H bond density, and low N-H bond density. Furthermore, both higher PID resistance and higher conversion efficiency are achieved using an ARC of double or triple layers comprising stacked silicon nitride layers of different RI than those of a conventional single-layer ARC.