The ability to track the levels of specific molecules, such as drugs, metabolites, and biomarkers, in the living body, in real time and for long durations would improve our understanding of health and our ability to diagnose, treat and monitor disease. To this end, we are developing electrochemical aptamer-based (E-AB) biosensors, a general platform supporting high-frequency, real-time molecular measurements in the living body. Here we report that the addition of an agarose hydrogel protective layer to E-AB sensors significantly improves their baseline stability when deployed in the complex, highly time-varying environments found in vivo. The improved stability is sufficient that these hydrogel-protected sensors achieved good baseline stability when deployed in situ in the veins, muscles, bladder, or tumors of living rats without the use of the drift correction approaches traditionally required in such placements. Finally, this improved stability is achieved without any significant, associated “costs” in terms of detection limits, response times, or biocompatibility.