The c lassical tournam e nt problem caiJ s for arranging v individuals int o tea ms o f /) p layers so that a pla yer is teamed th e sa m e number of times with each of th e other pla ye rs and a lso that eac h player is pitted eq ually often aga in st each of th e other players. The play of th e tuurn a m en t resu lt s in th e determination of difference in p e rformance of th e various pairings of th e g roups. In th e s pecial case when p = 2 each team co n s ist s of two players and th e d es igri s are call e d brid ge tourn a me nt designs .In high prec is iun ca libration one ca n m eas ure only the difference be tw ee n t wo nominally eq ual g ro up s S(l that if u objects a re to be int e rco mpare d in groups of fJ objects, th en th e so lution s tu th e to urnam e nt probl e m provid e sc hedul es for th e gl'll uping. Th ese des ig ns are useful in we ig hing a nd any o th e r m eas ul'e m c nt s where th e obj ec ts tu b e meas ure d ca n b e co mbin ed intu gl'll ups without loss of prec is ion or acc uracy ill th e compari sons.Tili s pape r pre se nt s ge ne ral m e thud s fill' co nstru c tin g of brid ge lourn a m e nt d es ign s, i. e ., for Lh t' case wh c n p = 2, fur all /1 ~ 50.Key Wurd s : Ca libration , ca li bration designs. co mbin a tori a l analysis , diffe re nce se ts, e xpe riment d es ig ns' , in c omplete bloc k d es igns, tournam e nt s , weighing de s ign s.