Abstract:The study of combinatorial properties of mathematical objects is a very important research field and continued fractions have been deeply studied in this sense. However, multidimensional continued fractions, which are a generalization arising from an algorithm due to Jacobi, have been poorly investigated in this sense, up to now. In this paper, we propose a combinatorial interpretation of the convergents of multidimensional continued fractions in terms of counting some particular tilings, generalizing some res… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.