2020
DOI: 10.48550/arxiv.2009.11530
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Combinatorics of ultrafilters on Cohen and random algebras

Jörg Brendle,
Francesco Parente

Abstract: We investigate the structure of ultrafilters on Boolean algebras in the framework of Tukey reducibility. In particular, this paper provides several techniques to construct ultrafilters which are not Tukey maximal. Furthermore, we connect this analysis with a cardinal invariant of Boolean algebras, the ultrafilter number, and prove consistency results concerning its possible values on Cohen and random algebras.

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 17 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?