Light sheet fluorescence microscopy (LSFM) provides the benefit of optical sectioning coupled with rapid acquisition times for imaging of tissue-cleared specimen. This allows for high-resolution 3D imaging of large tissue volumes. Inherently to LSFM, the quality of the imaging heavily relies on the characteristics of the illumination beam, with the notion that the illumination beam only illuminates a thin section that is being imaged. Therefore, substantial efforts are dedicated to identifying slender, non-diffracting beam profiles that can yield uniform and high-contrast images. An ongoing debate concerns the employment of the most optimal illumination beam; Gaussian, Bessel, Airy patterns and/or others. Comparisons among different beam profiles is challenging as their optimization objective is often different. Given that our large imaging datasets (∼0.5TB images per sample) is already analyzed using deep learning models, we envisioned a different approach to this problem by hypothesizing that we can tailor the illumination beam to boost the deep learning models performance. We achieve this by integrating the physical LSFM illumination model after passing through a variable phase mask into the training of a cell detection network. Here we report that the joint optimization continuously updates the phase mask, improving the image quality for better cell detection. Our method’s efficacy is demonstrated through both simulations and experiments, revealing substantial enhancements in imaging quality compared to traditional Gaussian light sheet. We offer valuable insights for designing microscopy systems through a computational approach that exhibits significant potential for advancing optics design that relies on deep learning models for analysis of imaging datasets.