Attribute reduction is commonly referred to as the key topic in researching rough set. Concerning the strategies for searching reduct, though various heuristics based forward greedy searchings have been developed, most of them were designed for pursuing one and only one characteristic which is closely related to the performance of reduct. Nevertheless, it is frequently expected that a justifiable searching should explicitly involves three main characteristics: (1) the process of obtaining reduct with low time consumption; (2) generate reduct with high stability; (3) acquire reduct with competent classification ability. To fill such gap, a hybrid based searching mechanism is designed, which takes the above characteristics into account. Such a mechanism not only adopts multiple fitness functions to evaluate the candidate attributes, but also queries the distance between attributes for determining whether two or more attributes can be added into the reduct simultaneously. The former may be useful in deriving reduct with higher stability and competent classification ability, and the latter may contribute to the lower time consumption of deriving reduct. By comparing with 5 state-of-the-art algorithms for searching reduct, the experimental results over 20 UCI data sets demonstrate the effectiveness of our new mechanism. This study suggests a new trend of attribute reduction for achieving a balance among various characteristics.