Background: Chronic obstructive pulmonary disease (COPD) is a multifactorial disorder which is affected by external and internal risk factors. People with no external risk factors may be significantly affected and develop pulmonary disease. The study aimed to define gene-gene and gene-environmental effects on COPD. Methods: A case control study involved 181 COPD patients and 292 healthy individuals, with peripheral blood sampling and adequate questionnaires. Genotyping was done with various types of PCR design for GSTM1 (null del), GSTT1 (null del), EPHX1 (rs2234922 and rs1051740), GSTP1 (rs1695 and rs1138272), CHRNA3 (rs1051730 and rs12914385), CHRNA5 (rs16969968 and rs17486278), and SOD3 (rs1799895 and rs699473) gene polymorphisms. Gene-gene and gene-environmental interactions were investigated using multidimensional regression analysis. Results: Frequency of risk alleles of rs1051730 (p = 0.001), rs16969968 (p <0.001), and rs1799895 (p <0.001) polymorphisms were significant in univariate analysis. For gene-gene interaction, GSTM1 null, rs1051730, rs16969968, and rs1799895 polymorphisms independently contributed to risk of COPD and any combinations of the risk genotypes have a higher risk of disease. A cumulative effect of the four risk polymorphisms increased the risk of COPD for the smoking index (cOR = 13.6, p <0.001), cigarettes per day (cOR = 32.08, p <0.01), nicotine dependence (cOR = 12.0, p <0.01), and smoking status (cOR = 17.02, p <0.01) for gene-environmental interaction. Conclusion: Several pivotal genes showed distinct effects for COPD, and some synergistic effects affected the disease progression. The development of COPD was synergistically increased with gene-gene and gene-environmental risk factors.