The increasing demand for renewable energy sources has led to significant interest in second-generation biofuels derived from lignocellulosic biomass and waste materials. This review underscores the pivotal role of lignocellulosic biomass valorization in meeting global energy needs, mitigating greenhouse gas emissions, and fostering a circular bioeconomy. Key pretreatment methods—including steam explosion, pressure treatment, and chemical pretreatment—are analyzed for their ability to enhance the accessibility of cellulose and hemicellulose in enzymatic saccharification. Advances in cellulolytic enzyme development and fermentation strategies, such as the use of genetically engineered microorganisms capable of fermenting both hexoses and pentoses, are discussed in detail. Furthermore, the potential of biorefinery systems is explored, highlighting their capacity to integrate biomass valorization into biofuel production alongside high-value bioproducts. Case studies and recent trends in bioethanol and biogas production are examined, providing insights into the current state of research and its industrial applications. While lignocellulosic biofuels hold considerable promise for sustainable development and emissions reduction, challenges related to cost optimization, process scalability, and technological barriers must be addressed to enable large-scale implementation. This review serves as a comprehensive foundation for bridging the gap between laboratory research and industrial application, emphasizing the need for continued innovation and interdisciplinary collaboration in biofuel technologies.