Climate change is increasing the occurrence of extreme weather events, such as intense windstorms, with a trend expected to worsen due to global warming. The growing intensity and frequency of these events are causing a significant number of failures in power distribution grids. However, understanding the nature of extreme wind events and predicting their impact on distribution grids can help and prevent these issues, potentially mitigating their adverse effects. This study analyzes a structured method to predict distribution grid disruptions caused by extreme wind events. The method utilizes Machine Learning (ML) models, including K-Nearest Neighbors (KNN), Random Forest (RF), Support Vector Machine (SVM), Decision Trees (DTs), Gradient Boosting Machine (GBM), Gaussian Process (GP), Deep Neural Network (DNN), and Ensemble Learning which combines RF, SVM and GP to analyze synthetic failure data and predict power grid outages. The study utilized meteorological information, physical fragility curves, and scenario generation for distribution systems. The approach is validated by using five-fold cross-validation on the dataset, demonstrating its effectiveness in enhancing predictive capabilities against extreme wind events. Experimental results showed that the Ensemble Learning, GP, and SVM models outperformed other predictive models in the binary classification task of identifying failures or non-failures, achieving the highest performance metrics.