Introduction. Nowadays, the development of delivery systems based on micro- and nanoparticles is being actively pursued to increase the selectivity and efficiency of photosensitizers in photodynamic therapy. Such microparticles could increase the effectiveness of the already used chemotherapeutic drugs due to their accumulation in the tumor and help to overcome the drug resistance of tumor cells.The aim of this research was to obtain microparticles based on a biocompatible block copolymer of lactic and glycolic acids with the inclusion of the photosensitizer radachlorin, magnetic nanoparticles, and perfluorodecalin and their subsequent evaluation as therapeutic agents for photodynamic therapy.Materials and methods. Microparticles were obtained using the double emulsion method, described using of electron microscopy. Evaluation of their photodynamic properties was carried out using spectrophotometry and MTTtest on cell culture.Results. Spherical microparticles with a size of less than 1 μm were obtained. The release of the active substance from microparticles occurred gradually over two weeks, and in the case of the presence of magnetic nanoparticles, the concentration of radachlorin remained practically unchanged for a month. Exposure of microparticles to the light of LED is accompanied by the formation ofsinglet oxygen. Electron microscopy indicated intracellular position of microparticlesin tumor cells. The MTT test revealed a significant inhibition of cell viability in the presence of microparticles.Conclusion. The research results allow us to consider the obtained biocompatible polymer microparticles with the inclusion of radachlorin as a depot of radachlorin for local use in photodynamic therapy of tumors.