[1] Sr-Nd-Pb-Hf isotopic compositions of postshield lavas from two pairs of Hawaiian volcanoes, Mauna Kea and Kohala (Kea trend) and Hualalai and Mahukona (Loa trend), allow for identification of smallscale (tens of kilometers) heterogeneities in the Hawaiian mantle plume and provide constraints on their distribution. The postshield lavas range from transitional/alkalic basalt to trachyte and are enriched in incompatible trace elements (e.g., La N /Yb N = 6.0-16.2 Pb/ 204 Pb = 17.89-18.01) of recent Hawaiian volcanoes. In contrast, comparison of Kohala with the adjacent Mahukona volcano shows that these older postshield lavas become more radiogenic in Pb during the late stages of volcanism. The isotope systematics of the postshield lavas cannot be explained by mixing between Hawaiian plume end-members (e.g., Kea, Koolau, and Loihi) or by assimilation of Pacific lithosphere and are consistent with the presence of ancient recycled lower oceanic crust (±sediments) in their source. More than one depleted component is sampled by the postshield lavas and these components are long-lived features of the Hawaiian plume that are present in both the Kea and Loa source regions. The depleted components in the postshield lavas, particularly as sampled at Hualalai, are different from the much more homogeneous component present in rejuvenated lavas. The geochemistry of the postshield lavas provides evidence for a bilateral symmetry to the plume where the compositional boundary between the Kea and Loa sources is complex and vertical components of heterogeneity are significant.