To determine whether (or not) the intrinsic predictability limit of the atmosphere is two weeks and whether (or not) Lorenz’s approaches support this limit, this entry discusses the following topics: (A). The Lorenz 1963 model qualitatively revealed the essence of a finite predictability within a chaotic system such as the atmosphere. However, the Lorenz 1963 model did not determine a precise limit for atmospheric predictability. (B). In the 1960s, using real-world models, the two-week predictability limit was originally estimated based on a doubling time of five days. The finding was documented by Charney et al. in 1966 and has become a consensus. Throughout this entry, Major Point A and B are used as respective references for these topics. A literature review and an analysis suggested that the Lorenz 1963 model qualitatively revealed a finite predictability, and that findings of the Lorenz 1969 model with a saturation assumption supported the idea of the two-week predictability limit, which, in the 1960s, was estimated based on a doubling time of five days obtained using real-world models. However, the theoretical Lorenz 1963 and 1969 models have limitations, such as a lack of certain processes and assumptions, and, therefore, cannot represent an intrinsic predictability limit of the atmosphere. This entry suggests an optimistic view for searching for a predictability limit using different approaches and is supported by recent promising simulations that go beyond two weeks.