Determining a precise nitrogen fertilizer requirement for maize in a particular field and year has proven to be a challenge due to the complexity of the nitrogen inputs, transformations and outputs in the nitrogen cycle. Remote sensing of maize nitrogen deficiency may be one way to move nitrogen fertilizer applications closer to the specific nitrogen requirement. Six vegetation indices [normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), red-edge normalized difference vegetation index (RENDVI), triangle greenness index (TGI), normalized area vegetation index (NAVI) and chlorophyll index-green (CIgreen)] were evaluated for their ability to detect nitrogen deficiency and predict grain maize grain yield. Strip trials were established at two locations in Arkansas, USA, with nitrogen rate as the primary treatment. Remote sensing data was collected weekly with an unmanned aerial system (UAS) equipped with a multispectral and thermal sensor. Relationships among index value, nitrogen fertilizer rate and maize growth stage were evaluated. Green NDVI, RENDVI and CIgreen had the strongest relationship with nitrogen fertilizer treatment. Chlorophyll Index-green and GNDVI were the best predictors of maize grain yield early in the growing season when the application of additional nitrogen was still agronomically feasible. However, the logistics of late season nitrogen application must be considered.