2019
DOI: 10.17654/as059020199
|View full text |Cite
|
Sign up to set email alerts
|

Combining Forecasts of Arima and Exponential Smoothing Models

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 0 publications
0
2
0
1
Order By: Relevance
“…Teknik ini dapat menghilangkan perubahan yang tidak disengaja dalam deret waktu, memperlihatkan metode dengan tren data terbaru, dan bekerja secara akurat dalam memahami prediksi jangka pendek. Metode exponential smoothing merupakan sebuah metode yang cocok untuk digunakan disaat tidak ada tren atau pola musiman [13]. Penelitian ini menggunakan metode Exponential Smoothing, dimana menjelaskan bahwa data mengalami ketakstabilan di sekitar nilai rata-rata yang stabil.…”
Section: Metode Exponential Smoothingunclassified
“…Teknik ini dapat menghilangkan perubahan yang tidak disengaja dalam deret waktu, memperlihatkan metode dengan tren data terbaru, dan bekerja secara akurat dalam memahami prediksi jangka pendek. Metode exponential smoothing merupakan sebuah metode yang cocok untuk digunakan disaat tidak ada tren atau pola musiman [13]. Penelitian ini menggunakan metode Exponential Smoothing, dimana menjelaskan bahwa data mengalami ketakstabilan di sekitar nilai rata-rata yang stabil.…”
Section: Metode Exponential Smoothingunclassified
“…Overall, the data-driven methods for traffic forecast can be classified into two categories: parametric approach and non-parametric approach ( 1 ). The parametric approach deals with the relationship between travel time and other traffic variables, including historical average ( 2, 3 ), linear regression ( 46 ), auto regressive integrated moving average (ARIMA) ( 68 ), and Kalman filter ( 911 ). Non-parametric approach includes neural networks (NNs) ( 1214 ), k -nearest neighborhood ( k -NN) method ( 1517 ), and support vector machine ( 18–20 ).…”
mentioning
confidence: 99%
“…Traffic flow prediction approaches so far can be broadly classified into the time-series analysis approach and the machine learning approach ( 1 ). Techniques associated with the time-series analysis approach cover a wide range, from historical average ( 2 ) to Kalman Filtering ( 3 6 ), Exponential Smoothing ( 7 , 8 ), and Autoregressive Moving Average (ARIMA) models ( 7 , 9 11 ). Techniques associated with the machine learning approach include k-Nearest Neighbor ( 12 15 ), Artificial Neural Network ( 16 18 ), and Support Vector Machine (SVM) ( 19 – 21 ).…”
mentioning
confidence: 99%