2018 10th International Conference on Knowledge and Systems Engineering (KSE) 2018
DOI: 10.1109/kse.2018.8573321
|View full text |Cite
|
Sign up to set email alerts
|

Combining Fuzzy Set – Simple Additive Weight and Comparing With Grey Relational Analysis For Student’s Competency Assessment In The Industrial 4.0

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2021
2021

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 10 publications
0
2
0
1
Order By: Relevance
“…(1) rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i=1,2,...,m dan j=1,2,...,n. Nilai preferensi untuk setiap alternatif (Vi) diberikan sebagai berikut [17], [18], [19]: Konsep ANEKA pada dasarnya merupakan kependekan dari kata "Akutabilitas", "Nasionalisme", "Etika Publik", "Komitmen Mutu", dan "Anti Korupsi" [20], [21]. ANEKA merupakan suatu nilai-nilai yang harus mampu diinternalisasikan secara baik dan optimal oleh para pegawai negeri sipil dalam melaksanakan tugasnya, sehingga dapat menunjukkan tingkat profesionalisme mereka.…”
Section: ∑(Jawaban X Bobot Tiap Pilihan) Persentase = ---------------unclassified
“…(1) rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i=1,2,...,m dan j=1,2,...,n. Nilai preferensi untuk setiap alternatif (Vi) diberikan sebagai berikut [17], [18], [19]: Konsep ANEKA pada dasarnya merupakan kependekan dari kata "Akutabilitas", "Nasionalisme", "Etika Publik", "Komitmen Mutu", dan "Anti Korupsi" [20], [21]. ANEKA merupakan suatu nilai-nilai yang harus mampu diinternalisasikan secara baik dan optimal oleh para pegawai negeri sipil dalam melaksanakan tugasnya, sehingga dapat menunjukkan tingkat profesionalisme mereka.…”
Section: ∑(Jawaban X Bobot Tiap Pilihan) Persentase = ---------------unclassified
“…In contrast, the linguistic approach premise is that neither the students' grades nor the relationship importance can be precisely expressed with numbers. For instance, [25]- [28] propose assessment procedures based on fuzzy linguistic logic to aggregate students' grades and relationship importance expressed in natural language (e.g., ''learning outcome LO is poorly achieved'' and ''LO is essential for competency C'', respectively).…”
Section: Related Workmentioning
confidence: 99%
“…As mentioned earlier, the knowledge of the users on the subject seems to be the most important characteristic for error diagnosis in most AEHSs. Almost all adaptive presentation techniques, e.g., fuzzy weights [3,4], artificial neural networks [5,6], multiple-criteria decision analysis [7,8], are based on user knowledge as the main source of personalization. User knowledge is a variable for each user.…”
Section: Introductionmentioning
confidence: 99%